Algae of Australia

Introduction
This work should be cited as:

Individual contributions may be cited as:

This book is available from:
CSIRO PUBLISHING
PO Box 1139 (150 Oxford Street)
Collingwood VIC 3066
Australia
Tel: (03) 9662 7666 Int: +(61 3) 9662 7666
Fax: (03) 9662 7555 Int: +(61 3) 9662 7555
Email: publishing.sales@csiro.au
Website: www.publish.csiro.au

National Library of Australia
Cataloguing-in-Publication entry
Algae of Australia: Introduction.
Bibliography.
Includes index.
ISBN 0 643 09375 3 (set).

579.80994

Design: Brigitte Kuchlmayr

Published by ABRS, Canberra & CSIRO Publishing, Melbourne
CONTENTS

Contributors vii

A History of Systematic Phycology in Australia
R.A. Cowan & S.C. Ducker 1

Phylogeny and Classification of the Algae
J.M. Huisman & G.W. Saunders 66

The Fossil Record of Algae
A. Garcia & G. Playford 104

A Guide to the Identification of Algae
J.M. Huisman & T.J. Entwisle 129

A Bibliography of Australian Algae
J.M. Huisman & T.J. Entwisle 158

The Major Groups of Algae

Photosynthetic Oxygenic Prokaryotes
A.W.D. Larkum 198

Glaucocystophyta
T.J. Entwisle 207

Rhodophyta
Cyanidiophyceae and Bangiophyceae
J.A. West 209

Florideophyceae
J.M. Huisman & G.T. Krecf 217

Heterokontophyta

Chrysophyceae
S.W. Jeffrey & M. Vesk 224

Pelagophyceae
G.W. Saunders & R.A. Anderson 228

Synurophyceae
R.A. Anderson 235

Xanthophyceae
T.J. Entwisle 255

Eustigmatophyceae
S.W. Jeffrey & M. Vesk 257

Raphidophyceae
G.M. Hallegaard 259

Dictyochophyceae
S.W. Jeffrey & M. Vesk 262

Phaeophyceae
J.A. Phillips 264

Bacillariophyceae
J. John 288

Haptophyta: Haptophyceae
S.W. Jeffrey & M. Vesk 311

Cryptophyta: Cryptophyceae
S.W. Jeffrey & M. Vesk 315

Dinophyta: Dinophyceae
G.M. Hallegaard 319

Euglenophyta: Euglenophyceae
S.W. Jeffrey & M. Vesk 324

Chlorarachniophyta: Chlorarachniophyceae
G.I. McFadden 327

Chlorophyta

Prasinophyceae
S.W. Jeffrey & M. Vesk 331

Chlorophyceae
S. Skinner & T.J. Entwisle 334

Ulvophyceae
S. Skinner & T.J. Entwisle 338

Cladophorophyceae
S. Skinner, A.J.K. Miliar & T.J. Entwisle 341
<table>
<thead>
<tr>
<th>Section</th>
<th>Author(s)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bryopsidophyceae</td>
<td>G.C. Zuccarello</td>
<td>345</td>
</tr>
<tr>
<td>Dasycladophyceae</td>
<td>S. Skinner & T.J. Entwisle</td>
<td>349</td>
</tr>
<tr>
<td>Trentepohliophyceae</td>
<td>G.C. Zuccarello & J.M. Lopez-Bautista</td>
<td>351</td>
</tr>
<tr>
<td>Trebouxiophyceae</td>
<td>G.C. Zuccarello</td>
<td>353</td>
</tr>
<tr>
<td>Klebsormidiophyceae</td>
<td>K.G. Karol & M.T. Casanova</td>
<td>356</td>
</tr>
<tr>
<td>Zygnemophyceae</td>
<td>M.T. Casanova & S.H. Lewis</td>
<td>353</td>
</tr>
<tr>
<td>Charophyceae</td>
<td>M.T. Casanova</td>
<td>368</td>
</tr>
<tr>
<td>Ecology of Marine Macroalgae</td>
<td>A.J. Underwood</td>
<td>374</td>
</tr>
<tr>
<td>Ecology of Marine Microalgae: A Physiological Perspective</td>
<td>J. Beadell & A.M. Redden</td>
<td>405</td>
</tr>
<tr>
<td>Ecology of Non-Marine Algae: Streams</td>
<td>C.G. Peterson</td>
<td>434</td>
</tr>
<tr>
<td>Ecology of Non-Marine Algae: Wetlands</td>
<td>M.T. Casanova</td>
<td>476</td>
</tr>
<tr>
<td>Ecology of Terrestrial Algae</td>
<td>P.A. Broady</td>
<td>486</td>
</tr>
<tr>
<td>Global Biogeography and Relationships of the</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Australian Marine Macroalgae</td>
<td>M.H. Hommersand</td>
<td>511</td>
</tr>
<tr>
<td>The Dampierian Province</td>
<td>J.M. Huisman</td>
<td>543</td>
</tr>
<tr>
<td>The Solanderian Province</td>
<td>J.A. Phillips</td>
<td>550</td>
</tr>
<tr>
<td>The Flindersian and Peronian Provinces</td>
<td>A.J.K. Millar</td>
<td>554</td>
</tr>
<tr>
<td>Biogeography of Marine Microalgae</td>
<td>G.M. Hallegraeff</td>
<td>560</td>
</tr>
<tr>
<td>Biogeography of Freshwater Macroalgae</td>
<td>T.J. Entwisle</td>
<td>566</td>
</tr>
<tr>
<td>Biogeography of Freshwater Microalgae</td>
<td>W. Vyverman, E. Verleyen & K. Sabbe</td>
<td>580</td>
</tr>
<tr>
<td>Economic Importance of Algae</td>
<td>M.A. Borowitzka & G.M. Hallegraeff</td>
<td>594</td>
</tr>
<tr>
<td>Glossary</td>
<td>compiled by J.M. Huisman & T.J. Entwisle</td>
<td>623</td>
</tr>
<tr>
<td>Abbreviations and Contractions</td>
<td></td>
<td>694</td>
</tr>
<tr>
<td>Publication date of previous volume</td>
<td></td>
<td>698</td>
</tr>
<tr>
<td>Index</td>
<td></td>
<td>699</td>
</tr>
</tbody>
</table>
CONTRIBUTORS

Prof. Robert A. Andersen, Bigelow Laboratory for Ocean Sciences, West Boothbay Harbor, Maine 04575, United States of America.

Prof. John Beardall, School of Biological Sciences, PO Box 18, Monash University, Clayton, Victoria 3800.

Prof. Michael A. Borowitzka, Algae Research Group, School of Biological Sciences & Biotechnology, Murdoch University, Murdoch, Western Australia 6150.

Dr Paul A. Broady, School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand.

Dr Robert A. Cowan, School of Biological Sciences and Biotechnology, Murdoch University, Murdoch, Western Australia 6150.

Dr Sophie C. Ducker (deceased), formerly of the School of Botany, The University of Melbourne, Parkville, Victoria 3052.

Dr Timothy J. Entwistle, Royal Botanic Gardens Sydney and Domain Trust, Mrs Macquaries Road, Sydney, New South Wales 2000.

Dr Adriana Garcia, School of Earth and Environmental Sciences, University of Wollongong, Wollongong, New South Wales 2522.

Assoc. Prof. Gustaaf M. Hallegaard, School of Plant Science, University of Tasmania, Private Bag 55, Hobart, Tasmania 7001.

Prof. Max H. Hommersand, Department of Biology, Coker Hall, University of North Carolina, Chapel Hill, NC 27599-3280, United States of America.

Dr John M. Huisman, School of Biological Sciences and Biotechnology, Murdoch University, Murdoch, Western Australia 6150 & Western Australian Herbarium, Department of Environment and Conservation, George St., Kensington, Western Australia 6151.

Dr Shirley W. Jeffrey, CSIRO Division of Marine Research, GPO Box 1538, Hobart, Tasmania 7001.

Dr Jacob John, School of Environmental Biology, Curtin University of Technology, GPO Box U1987, Perth, Western Australia 6895.

Prof. Kenneth G. Karol, Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, United States of America.

Dr Gerald T. Kraft, School of Botany, The University of Melbourne, Parkville, Victoria 3052.

Dr Anthony W.D. Larkum, School of Biological Sciences, University of Sydney, New South Wales 2006.

Mr Simon H. Lewis, PO Box 7045, Beaumaris, Victoria 3193.

Dr Juan M. Lopez-Bautista, Department of Biology, University of Louisiana, Lafayette, LA 70504-2451, United States of America.

Dr Geoffrey I. McFadden, Plant Cell Biology Research Centre, School of Botany, The University of Melbourne, Parkville, Victoria 3052.

Dr Alan J.K. Millar, Royal Botanic Gardens Sydney and Domain Trust, Mrs Macquaries Road, Sydney, New South Wales 2000.

Dr Koenraad Maylaert, Department of Biology, Laboratory of Protozology and Aquatic Ecology, Ghent University, Krijgslaan 281-S8, B-9000 Ghent, Belgium.
Prof. Christopher G. Peterson, Department of Natural Science, Loyola University Chicago, 6525 N Sheridan Rd, Chicago, Illinois 60626, United States of America.

Dr Julie A. Phillips, Centre for Microscopy and Microanalysis, University of Queensland, St. Lucia, Queensland 4072.

Prof. Geoffrey Playsford, Earth Sciences, School of Physical Sciences, The University of Queensland, Brisbane, Queensland 4072.

Dr Anna M. Redden, School of Environmental and Life Sciences, Ourimbah Campus, University of Newcastle, PO Box 127, Ourimbah, New South Wales 2258.

Dr Koen Sabbe, Department of Biology, Laboratory of Protistology and Aquatic Ecology, Ghent University, Krijgslaan 281-S8, B-9000 Ghent, Belgium.

Prof. Gary W. Saunders, Department of Biology, University of New Brunswick, Fredericton, E3B 6E1, New Brunswick, Canada.

Dr Stephen Skinner, Royal Botanic Gardens and Domain Trust, Mrs Macquaries Rd, Sydney, New South Wales 2000.

Dr Elke Verleyen, Department of Biology, Laboratory of Protistology and Aquatic Ecology, Ghent University, Krijgslaan 281-S8, B-9000 Ghent, Belgium.

Dr Marei Vesk, 7/16 Crows Nest Rd, Waverton, New South Wales 2060.

Prof. Wim Vyverman, Department of Biology, Laboratory of Protistology and Aquatic Ecology, Ghent University, Krijgslaan 281-S8, B-9000 Ghent, Belgium.

Dr John A. West, School of Botany, The University of Melbourne, Parkville, Victoria 3052.

Dr Giuseppe C. Zuccarello, School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington 6001, New Zealand.

Editor’s note: The following colour photographs were published previously in J.M. Huisman, Marine Plants of Australia, University of Western Australia Press, Nedlands; Australian Biological Resources Study, Canberra (2000):

Plates 1–6, 18, 20, 21, 26, 27, 31–34, 39, 40, 42, 43, 45, 47, 51, 52.
CHLORARACHNIOPHYTA:
CHLORARACHNIOPHYCEAE

Geoffrey I. McFadden

The type species of the Chlorarachniophyceae, Chlorarachniun repons Geitler, was described by Lothar Geitler in 1930 from Las Palmas in the Canary Islands (Fig. 46). The cells are amoeboid with pseudopodia interconnecting as many as 150 cells into a reticuloplasmodial continuum (Geitler, 1930). The reticulopodia (interconnecting pseudopodia from separate cells) entrap bacteria, flagellates and eukaryotic algae which are transported to the cell and digested (Geitler, 1930). An extraordinary feature of Chlorarachniun is the presence of grass-green plastids with a pyrenoid. The combination of green plastids and reticuloplasmodial habit presented a systematic dilemma to Geitler who considered that Chlorarachniun could be either a rhizopodial euglenoid or a heterokont (Geitler, 1930).

Chlorarachniophytes are now known to have arisen through a process termed "secondary endosymbiosis" in which a eukaryotic phagotroph engulfed and retained a photosynthetic eukaryote (McFadden et al., 1994). This process, which results in lateral transfer of photosynthetic capacity into heterotrophic lineages, has spawned at least two algal lineages, chlorarachniophytes and cryptomonads (McFadden & Glibson, 1995). The endosymbionts of chlorarachniophytes and cryptomonads are drastically reduced and located within the host's endomembrane system, retaining only the plastid, a modicum of cytoplasm, a relict nucleus (known as the 'nucleomorph') and a plasma membrane (McFadden & Glibson, 1995). Secondary endosymbiosis is also invoked for the origin of plastids in heterokonts, haplophytes, euglenoids and dinoflagellates but, since these algae apparently do not retain any relict endosymbiont nucleus, it has been difficult to substantiate these hypotheses (for recent reviews see Cavalier-Smith, 1993; Palmer & Delwiche, 1996, p. 74 in this volume). Thus, Chlorarachniophytes are a valuable model for understanding the origins of plastids (Palmer & Delwiche, 1996).

Anatomy and morphology

Cells exist as solitary or reticulopodial amoebae, as flagellates with a single flagellum and as cysts.

Cellular organisation

The plastids, which number five, six or seven in the amoeboid cell of Chlorarachniun repons, are surrounded by four membranes. Between the inner and outer pairs of chloroplast membranes there is a small volume of cytoplasm containing particles resembling ribosomes, of dimensions similar to those of eukaryotes. Also situated between the inner and outer pairs of membranes is a double membrane-bound organelle, the nucleomorph. The two membranes surrounding the nucleomorph are interrupted by pores similar to those observed in nuclei generally (Hibberd & Norris, 1984). The nucleomorph was recognised as possibly representing a vestigial nucleus by Hibberd & Norris (1984) who postulated that the plastid is a reduced, eukaryotic endosymbiont.

1 Plant Cell Biology Research Centre, School of Botany, The University of Melbourne, Parkville, Victoria 3052.
Photosynthetic pigments

The pigment repertoire includes chlorophylls a and b, β,β-carotene and some unusual xanthophylls unique to prasinophytes, which is consistent with the plastid being derived from a green alga (Hibberd & Norris, 1984; Ludwig & Gibbs, 1989; Hartkevich et al., 1991).

Characteristics

Chlorarachniophytes are marine, amoeboid flagellate unicells. Distribution is worldwide, but most records are tropical and subtropical. Currently, four genera are recognised (Chlorarachnion, Lotharella, Gymnochloa, Cryptochloa), but several undescribed forms that undoubtedly represent new genera are also known (Ishida et al., 1999). Without electron microscopical or molecular evidence it is not clear if Cryptochloa perforans Caeders-Saenz & Schnetter (1987) is really a chlorarachniophyte, but Chlorarachnion, Gymnochloa and Lotharella undoubtedly are. The amoeboid forms are typically found in sand and sediments, but the minute flagellate forms (< 3 µm) may be planktonic (Gilson & McFadden, 1999). A sexual cycle may occur, but its details are not understood.

A defining feature of the group is the presence of vestigial, green algal endosymbionts within modified food vacuoles. The endosymbionts are greatly reduced, having lost many subcellular structures such as mitochondria and cell walls. A dramatic reduction of the endosymbiont's nucleus has produced a minute nucleus-like structure, the nucleomorph, that
CHLORARACHIOPHYCEAE

is housed within a vestige of cytoplasm. The only other significant structure remaining within the endosymbiont is a prominent, green chloroplast. Molecular studies of chlorarachiophyte nucleomorphs indicate their genomes are radically reduced. Nucleomorphs accommodate just three small linear chromosomes whose total genome size is less than 500 kb, making them among the smallest eukaryotic genomes discovered thus far. Whilst the nucleomorph encodes genes that perform some genetic house-keeping and chloroplast-associated functions, it is clear that many nucleomorph genes have been either lost or transferred to the host cell’s nucleus. With only 300 or so genes retained within the nucleomorph, it is apparent that most of the endosymbiont’s needs are met by the host cell. Plastid proteins synthesised by the host are apparently targeted to the semi-autonomous endosymbiont via the host endomembrane system (Gibson et al., 1997).

The host cell stores carbohydrate reserves as a β-1,3 glucan within a cytoplasmic vesicle appressed to the chloroplast’s bulbous pyrenoid (McFadden et al., 1997). The chloroplast contains no starch (McFadden et al., 1997).

<table>
<thead>
<tr>
<th>Characteristics of Chlorarachiophyceae</th>
</tr>
</thead>
<tbody>
<tr>
<td>Form: solitary or reticulopodial amoebae, flagellates, cysts.</td>
</tr>
<tr>
<td>Size: 2–20 μm.</td>
</tr>
<tr>
<td>Major pigments: chlorophylls a and b, β,β-carotene, luteoxanthin dodecanol.</td>
</tr>
<tr>
<td>Energy reserves: β-1,3 glucan.</td>
</tr>
<tr>
<td>Chloroplasts: 1–5, bounded by 4 membranes; nucleomorph in periplastidal space between inner and outer plastid membrane pairs; bulbous pyrenoid.</td>
</tr>
<tr>
<td>Cell covering: lamellate wall surrounding cysts; otherwise none observed.</td>
</tr>
<tr>
<td>Flagella: single with a hair-point.</td>
</tr>
<tr>
<td>Culture colour: grass-green.</td>
</tr>
</tbody>
</table>

Classification

Phylogenetic analyses confirm that the chlorarachiophyte endosymbiont was once a green alga (Ishida et al., 1997, 1999), whereas analyses of host genes demonstrate that chlorarachiophytes belong in the recently recognised Phylum Cercozoa, a collection of amoeboid and flagellate heterotrophs (Keeling et al., 1998; Ishida et al., 1999). Cavalier-Smith (1995) argued that the chlorarachiophytes are a small branch within this phylum which acquired a chloroplast through secondary endosymbiosis, and that chlorarachiophytes by themselves do not warrant phylum or division status.

References

(CCCP#621)

Unio reptans.

...some unusual derived from...

...1991.

...worldwide, but...
CHLORARACHNIOPHYCEAE

