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Abstract

A neural network approach for the prediction of mitochondrial transit peptides (mTPs) from the malaria-causing parasitePlasmodium
falciparumis presented. Nuclear-encoded mitochondrial protein precursors ofP. falciparumwere analyzed by statistical methods, principal
component analysis and supervised neural networks, and were compared to those of other eukaryotes. A distinct amino acid usage pattern
has been found in protein encoding regions ofP. falciparum: glycine, alanine, tryptophan and arginine are under-represented, whereas
isoleucine, tyrosine, asparagine and lysine are over-represented compared to the SwissProt average. Similar patterns were observed in
mTPs ofP. falciparum. Using principal component analysis (PCA), mTPs fromP. falciparumwere shown to differ considerably from
those of other organisms. A neural network system (PlasMit) for prediction of mTPs inP. falciparumsequences was developed, based on
the relative amino acid frequency in the first 24 N-terminal amino acids, yielding a Matthews correlation coefficient of 0.74 (90% correct
prediction) in a 20-fold cross-validation study. This system predicted 1177 (22%) mitochondrial genes, based on 5334 annotated genes in
theP. falciparumgenome. A second network with the same topology was trained to give more conservative estimate. This more stringent
network yielded a Matthews correlation coefficient of 0.51 (84% correct prediction) in a 10-fold cross-validation study. It predicted 381
(7.1%) mitochondrial genes, based on 5334 annotated genes in theP. falciparumgenome.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The malaria-causing parasitePlasmodium falciparumis a
major cause of human death and morbidity in many regions
of the world. The recent publication of the complete nuclear
genome ofP. falciparumis a significant advance in studying
the biology of the parasite[1]. With a wealth of genome
data available, it is now important to develop tools to make
sense of these data.

Several methods for the prediction of subcellular locations
of nuclear-encoded proteins in eukaryotic organisms were
developed over the past decade. Different approaches to this
issue have been conceived, such as artifical neural networks
in case of TargetP[2] or linear discriminant techniques ap-
plied to physicochemical parameters in case of MitoProtII
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[3]. In cases where neural networks were employed, rela-
tive amino acid fractions were most commonly used for de-
scribing the input data[4,5]. TargetP and MitoProtII yielded
Matthews correlation coefficients[6] of 0.46 and 0.66, re-
spectively, when applied to human protein test sequences
[7]. The scenario inP. falciparumis quite different. Using
a set of 40 putative mitochondrially targeted peptides (posi-
tive data set) and 135 cytosolic, extracellular and apicoplast
peptides (negative data set), the programs performed as fol-
lows. MitoProtII achieved a Mathews coefficient of cc=
0.49 with a sensitivity (positive predictions divided by total
number of positive sequences) of 0.8 (32/40) and a selectiv-
ity (true positive divided by total number of positive predic-
tions) of 0.47 (32/68). TargetP (plant-network) achieved a
Mathews coefficient of cc= 0.60 with a sensitivity of 0.55
(22/40) and a selectivity of 0.81 (22/27). Low selectivity in
case of MitoProtII and low sensitivity in case of TargetP
made the development of a new method for the prediction
of mitochondrial transit peptides (mTPs) inP. falciparum
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Fig. 1. Schematic of protein precursors targeted to four different cellular
locations. Targeting signals are indicated by grey shading. SP: signal
peptide, TP: transit peptide, mTP: mitochondrial transit peptide.

necessary. This new tool complements earlier work on the
prediction of apicoplast-targeted sequences inP. falciparum
[8].

The mitochondrial genome ofP. falciparumis only 6 kb
in size—the smallest yet discovered—and holds only three
protein-coding genes[9]. The great majority of its proteins
are nuclear encoded and have to be imported. Proteins are
generally targeted to their destination via appropriate tar-
geting signals (Fig. 1). Cytosolic proteins do not contain
targeting signals and therefore remain in the cytoplasm after
translation. Secreted proteins contain an N-terminal tar-
geting signal—the signal peptide—whereas apicoplastical
proteins contain an N-terminal signal peptide in conjunc-
tion with a transit peptide. Most mitochondrial targeting
signals are located at the N-terminus of the nascent amino
acid chain, although examples of internal and C-terminal
targeting motifs are also known[7]. N-terminal mTPs of
other organisms generally have a positive net charge due
to a significantly higher content of Arg; they also fea-
ture an enrichment in Ala and Ser and a lower content of
negatively charged residues[7]. They are thought to form
positively charged, amphiphilic�-helices as a dominant
characteristic[10], mTPs interact with multiprotein translo-
case complexes at the outer and inner mitochondrial mem-
branes, and are necessary and sufficient to faciliate protein
translocation across the mitochondrial membranes into the
mitochondrial matrix[11]. Once in the matrix, mTPs are
removed by a mitochondrial processing peptidase (MPP)
[12].

Here we describe how mitochondrial transit petides in
P. falciparumdiffer from those found in other eukaryotic
organisms. We describe the development and performance
of a software tool capable of predicting mTPs ofP. falci-
parum, based on their N-terminal amino acid composition.
This tool is calledPlasMit (for Plasmodiummitochon-
drial transit peptide prediction). In cross-validation stud-

ies it was shown to outperform established tools such as
TargetP and MitoProtII when applied toP. falciparum
sequences.

2. Materials and methods

2.1. Sequence retrieval and data sets

Both positive data, i.e. mitochondrial transit peptides
taken from the protein precursors, and negative data, i.e.
cytosolic proteins, secreted and apicoplast protein precur-
sors, were compiled based on sequence similarity studies,
and, in several cases, from direct experimental observation.
Sequence data forP. falciparumwere obtained from the In-
stitute for Genomic Research website (http://www.tigr.org).
All data sets used in this study can be downloaded from
URL http://www.modlab.de.

2.1.1. Positive examples
Sequences were included in the set of positive examples

when they fulfilled at least one of the following criteria.

(a) They are homologous to proteins exclusively or usu-
ally found in mitochondria of other organisms (e.g. pro-
teins of the citric acid cycle, the electron transport chain,
ubiquinone biosynthesis).

(b) In constructing a phylogenetic tree, they branch with
proteins known to be mitochondrial. The protein of
interest was included in a multiple sequence alignment
using ClustalW[13] and Pima 1.4[14] of the BCM
SearchLauncher (http://searchlauncher.bcm.tmc.edu).
The aligned sequences were imported into PAUP 4.0b
and adjusted manually. For the phylogenetic tree anal-
ysis, regions with poor sequence conservation were
removed. Neighbour-joining trees were produced and
boostrap values using 500–1000 replicated were ob-
tained. Values above 70% bootstrap support for a mito-
chondrial grouping and were used as an indication for
mitochondrial proteins.

(c) Proteins that have been experimentally shown to local-
ize in the mitochondrion (only dihydroorotate dehydro-
genase and�-aminolaevulinic acid synthase (ALAS) fall
into this category[15,16]).

A total of 40 positive examples was collected this way.

2.1.2. Negative examples
Negative examples, analogously, included proteins that

were experimentally assigned to “non-mitochondrial”
locations in P. falciparum, and proteins based on se-
quence similarity studies using proteins usually found in
“non-mitochondrial” compartments of other eukaryotic or-
ganisms. One hundred and thirty-five negative sequences
were incorporated into the negative data set.

http://www.tigr.org
http://www.modlab.de
http://searchlauncher.bcm.tmc.edu
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Table 1
Amino acid usage inP. falciparumcompared to other organisms

One-letter
amino acid code

Overall residue frequencies (%) Residue frequencies in mTPs (%)

P. falciparum SwissProt database
40.28

P. falciparum:
SwissProt ratio

P. falciparum Sample of 282
eukaryotic mTPs

P. falciparum: other
eukaryote ratio

A 2.00 7.70 0.26 1.70 13.20 0.13
C 1.80 1.60 1.13 2.70 1.80 1.50
D 6.40 5.28 1.21 0.60 0.50 1.20
E 7.00 6.50 1.08 1.80 0.90 2.00
F 4.40 4.08 1.08 7.20 3.60 2.00
G 3.00 6.90 0.43 2.60 5.70 0.46
H 2.50 2.30 1.09 2.30 1.50 1.53
I 9.10 5.90 1.54 8.80 3.00 2.93
K 11.70 6.00 1.95 15.80 4.10 3.85
L 7.60 9.60 0.79 8.80 13.30 0.66
M 2.30 2.37 0.97 6.00 5.60 1.07
N 13.90 4.30 3.23 9.70 2.10 4.62
P 2.00 4.91 0.41 1.70 4.40 0.39
Q 2.70 3.90 0.69 2.10 3.10 0.68
R 2.90 5.20 0.56 7.50 12.20 0.61
S 6.30 7.00 0.90 6.80 11.30 0.60
T 4.20 5.50 0.76 3.10 5.50 0.56
V 4.00 6.70 0.60 4.10 5.70 0.72
W 0.40 1.24 0.32 0.90 1.20 0.75
Y 5.80 3.10 1.87 5.90 1.10 5.36

In columns 2–4, bulk coding sequence fromP. falciparum is compared to SwissProt release 40.28. In columns 5–7,P. falciparummTPs are compared
to 282 mTPs from other eukaryotes.

2.1.3. P. falciparum Chromosome data
Five thousand three hundred and thirty-four annotated

genes from the PlasmoDB database were used[1,17,18].

2.1.4. Codon usage in P. falciparum
Amino acid usage in the peptide encoding regions

of P. falciparum was calculated from the “PlasmoDB—
Plasmodium falciparumCodon Usage Table” given at the
PlasmoDB website (http://www.plasmodb.org). The sam-
ple contained annotated peptide encoding regions from
Chromosome 2 and Chromosome 3. The calculated residue
frequencies are given inTable 1.

2.2. Sequence encoding

Our data collection suggests that mTPs ofP. falciparum
vary greatly in length (varying from 23 to 169 amino acids,
on average 64 amino acids with a standard deviation of
48 amino acids). Therefore, in all cases a fixed number
of N-terminal amino acids was used in our analysis. Their
length in other eukaryotes, taken from a sample of 422 mi-
tochondrial transit peptides from SwissProt, was determined
to have a median length of 31 amino acids, with the first
quartile at 24 and the third quartile at 42 amino acids. All
data sets were cut to these three different lengths. We found
that all sequences, apart from one cytosolic peptide, did not
have more than 50% pair-wise sequence identity (with re-
spect to different amino acids among the first 24, 31 or 42
residues, respectively, of all sequences from the same local-
ization group. Comparisons were performed using JalView
[19]). Therefore, no further redundancy reduction seemed

to be necessary and all sequences were used for further
analysis.

For each sequence, a 20-dimensional composition vector
was computed containing the relative residue frequencies
among the first 24 N-terminal amino acids. These vectors
were used for both principal component analysis (PCA) and
neural network training.

2.3. PCA

The principal component analysis tool of Statistica was
used to calculate linear independent variables from the raw
data matrices[20].

2.4. Artificial neural network (ANN)

Fully-connected, three-layered, feed-forward networks
were used for feature extraction by supervised learning. The
neural network code was generated by Statistica[20]. In the
hidden layer, a hyperbolic activation function, and in the
output layer, a logistic activation function, were used. All
networks were trained using the standard Back-Propagation
(BP) algorithm[21]. Twenty-fold cross validation was per-
formed with random splits of 89 sequences in the training
set and 43 sequences in the select and test sets, respectively.
The training set was used for ANN parameter optimization,
whereas the select set was used for evaluation of learning
progress and stopping conditions. Prediction performance
was evaluated using the test set. The condition for contin-
uation of training was an improvement of the fraction of
correctly predicted sequences within 104 iterations. Ran-

http://www.plasmodb.org
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dom initialization of network weights and a fixed learning
rate of 0.01 were used. The input layer contained 20 fan-out
neurons. Several ANNs with varying numbers (1–50) of
hidden neurons were trained to systematically find the
preferred network architecture. Genetic variable selection
was performed using the best performing architecture[22],
leading to a final network architecture with 13 neurons in
the input layer.

2.5. Accessibility of the PlasMit prediction system

The finalPlasMit system is based on a 13-3-1 ANN. The
www interface accepts FastA sequence format and is acces-
sible athttp://gecco.org.chemie.uni-frankfurt.de. For techni-
cal details about the prediction software, see this URL.

3. Results and discussion

A set of 40 mTPs fromP. falciparumwas compiled and
compared to N-terminal parts of 135 non-mitochondrial (61
cytoplasmic, 21 secretory and 53 apicoplast) sequences.
The aim was to extract characteristic mTP features and to
build a predictive model forP. falciparumgenome analysis.
First we performed principal component analysis to get an
idea of dominant features and the data distribution. Then
residue frequencies of both the overall (genome-derived)
and of the first 24 N-terminal amino acids of mitochondrial
transit peptides ofP. falciparumwere compared with those
of other eukaryotes. In addition, relative frequencies of
amino acid groups with respect to important physicochem-
ical properties—small, hydrophobic, negatively charged,
positively charged, polar—were compared among proteins
of P. falciparum. Neural networks with variable numbers of
neurons in the hidden layer were trained using the first 24,
31 and 42 amino acids for calculation of relative amino acid
frequencies. Finally, the best performing neural network
was used to predict the number of mitochondrially targeted
proteins based on the annotated genome ofP. falciparum.
An additional network using the same topology was trained
to give a lower number of false-positive results.

3.1. Feature extraction by principal component analysis

The PCA based on relative amino acid frequencies (Fig. 2)
suggests that there is a difference between mitochondrial
transit peptides ofP. falciparumand those of other eukary-
otic organisms. After varimax rotation, the first principal
component (PC1, 17.4% explained variance) correlates with
histidine (loading= 0.79) and alanine content (loading=
−0.64). Both correlations are in accordance with the ob-
served prevalence of amino acids in mTPs (Table 1). The
second principal component (PC2, 8.3% explained variance)
correlates with a serine (loading= 0.66) and glutamic acid
content (loading= −0.43). This is again in accordance with
the observed prevalence of amino acids of mTPs (Table 1).
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Fig. 2. Principal component analysis of the relative amino acid frequencies
of the first 24 N-terminal amino acids reveals differences between mTPs
from P. falciparum and mTPs from other eukaryotes. In light of these
differences it is unsurprising that generic tools (TargetP and MitoProtII)
recogniseP. falciparum mTPs only poorly. Solid dots: mTPs fromP.
falciparum, circles: mTPs from other eukaryotes. The 95% confidence
ellipsoids are shown.

It should be stressed that the direction a PC takes, with re-
spect to the original variables, is arbitrary. When PCs are
calculated for the same data set using two different software
packages, it is not unusual to find that the signs of the load-
ings of the variables on corresponding PCs (e.g. the first PC
from the two programs) are reversed. The component just
defines that the “serine-glutamic acid direction” bears high
information content with respect to the given data, but the
signs are arbitrary. In conclusion,Fig. 2 suggests that there
are sufficient differences between mTPs fromP. falciparum
and mTPs from other organisms to render the application of
established tools like TargetP and MitoProtII unviable.

PCA was primarily used to visualize the underlying data
distribution revealing that a distinction between positive and
negative examples seemed possible. A linear classifier was
tested based on the first two principal components yielding
12 erroneous classifications (7%). For the final classification
system artificial neural networks were used because of their
superior performance in this case and with our datasets (2%
error;vide infra).

In addition to classification by using relative amino acid
frequencies, we also attempted classification by using a PCA
of several hundred amino acid properties (not shown). Clas-
sification by using physicochemical properties did not out-
perform classification by relative amino acid frequencies. We
therefore remained with the relative amino acid frequency
encoding.

3.2. Comparison of residue usage in P. falciparum mTPs
and its whole genome to the residue usage in other
organisms

Our data indicate considerable differences in amino acid
residue usage betweenP. falciparumand other eukaryotic

http://gecco.org.chemie.uni-frankfurt.de
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organisms (Table 1). Glycine, alanine, tryptophan and pro-
line occur less than half as often in the sample of peptide
encoding regions from Chromosomes 2 and 3 ofP. falci-
parum, compared to residue frequencies in the SwissProt
database, version 40.28. This is also true for glycine, alanine
and proline, comparing mTPs ofP. falciparumto mTPs of
other organisms. Asparagine, lysine, tyrosine and isoleucine
occur more than 1.5 times as often in the annotated regions
of P. falciparumthan in the reference database mentioned
above. This observation holds when mTPs ofP. falciparum
and mTPs of other eukaryotes are compared. In addition,
phenylalanine occurs twice as often in mTPs ofP. falci-
parum. Much of the difference in amino acid usage between
P. falciparumand other eukaryotes in both mTPs and in the
overall genome can be explained by relating amino acid us-
age to the low G+ C nucleotide bias inP. falciparum. The
G + C content ofP. falciparumprotein-coding regions is
estimated to be 24%[1]. This makesP. falciparumthe eu-
karyote with the lowest G+ C content so far sequenced.

Lobry has shown a connection between G+ C content
of DNA and relative amino acid frequency for 59 bacterial
genomes[23]. It was found that G+ C-depleted genomes
contain low amino acid frequencies for alanine, arginine,
glycine and proline. This is likely due to the codons that
encode these residues usually requiring two or more G or
C nucleotide bases. InP. falciparumthese four residues are
similarly depleted. Glycine (ratio of 0.44), alanine (0.26),
arginine (0.55) proline (0.41), occur less than half or about
half as frequently as in the SwissProt database, version 40.28
(Table 1). Lobry also found that G+ C-depleted genomes
contained relatively higher amino acid frequencies for as-
paragine, isoleucine, leucine, lysine and tyrosine. This is
likely due to the codons that encode these residues usually
requiring one or fewer G or C nucleotide bases. InP. fal-
ciparum asparagine (ratio of 3.2), isoleucine (1.5), lysine
(2.0) and tyrosine (1.9) occur more frequently compared to
the reference SwissProt database (Table 1). As the only ex-
ception in this case, Leucine (0.67) occurs less frequently
in theP. falciparumgenome than in the reference database.
The residue usage pattern inP. falciparumcan thus be partly
explained by its genomic base composition, and it is rea-
sonable to assume that this nucleotide bias also contributes
to the unsatisfactory performance of TargetP and MitoProtII
when applied toP. falciparummTPs.

3.3. Relative frequencies of amino acids of P. falciparum
proteins with different locations

Cytosolic proteins generally lack N-terminal targeting
motifs (Fig. 1). Secretory proteins, which inP. falciparum
are targeted to numerous destinations both inside and outside
the parasite cell, usually contain a hydrophobic N-terminal
signal peptide (Fig. 1). This signal peptide encodes entry
to the endomembrane system at the endoplasmic reticulum.
Proteins targeted to the apicoplast represent a subset of
secretory proteins, with an asparagine- and lysine-rich tran-

sit peptide following the signal peptide (Fig. 1) [24]. This
transit peptide directs apicoplast proteins from the secretory
pathway into the apicoplast[24,25].

Comparison of the physicochemical properties of amino
acids that comprise the N-terminus of proteins targeted to
these various destinations reveal distinct features (Fig. 3).
mTPs differ from the other two classes of N-terminal target-
ing sequences (secretory and apicoplast) in their lower con-
tent of hydrophobic residues. Proteins targeted to mitochon-
dria have the highest amount of positively charged amino
acids as well as a scarcity of negatively charged residues,
resulting in the highest average positive net charge. Secre-
tory, apicoplast and cytosolic sequences each contain some
positively charged residues, but cytosolic proteins also con-
tain a considerable number of negatively charged residues,
resulting in a net charge that is relatively neutral compared
to apicoplast or secretory sequences.

3.4. Artificial neural network (ANN) training

An ANN-based prediction system was developed to clas-
sify protein sequences fromP. falciparum, based on relative
amino acid frequencies of the first 24, 31 and 42 N-terminal
residues. Three-layered ANN containing 1–50 hidden units
were trained in a 20-fold cross validation with theP. fal-
ciparum data set (40 positive, 135 negative examples; 89
sequences in training and 43 in each select and test set).
A network using 3 hidden neurons was chosen as the best
network, because it achieved a high Matthews coefficient
(cross validated cc= 0.74), together with low variance
(σ2 = 0.10) and a low number of hidden neurons.

Genetic selection of variables was performed to reduce
the set of input descriptors. The parameters chosen in Statis-
tica were 100 iterations, 100 children per iteration, mutation
rate = 1 and a crossover probability of 0.1. Seven amino
acids—Cys, Gln, His, Ser, Thr, Trp and Tyr—were found
not to improve classification results and were consequently
omitted, resulting in a 13-dimensional input vector of rela-
tive amino acid frequencies being used (Ala, Arg, Asp, Asn,
Glu, Gly, Ile, Leu, Lys, Met, Phe, Pro, Val).

A 20-fold cross validation employing the 13-dimensional
input vectors was performed, using an improvement in the
classification of the select set as a criterion to end learning.
On average, training was ended after 436 epochs, yielding
a Matthews coefficient of cc= 0.74, with on average 90%
correct prediction. Sensitivity was 0.94 with a selectivity of
0.68. This means that 94% of positive sequences were de-
tected and slightly more than two out of three (68%) positive
predictions were true positives.

Using all 175 sequences for training, a Matthews co-
efficient of cc= 0.92 was achieved, with a sensitivity of
0.98 and a selectivity of 0.91. Of the 175 sequences, only
5 were not correctly classified. The proteins M1 family
aminopeptidase, clathrin coat assembly protein, vacuolar
proton-pumping pyrophosphatase-2 and the knob-associated
histidine-rich protein (KAHRP) were “false positives”,
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Fig. 3. Relative amino acid distribution of proteins of different locations inP. falciparum, grouped by physicochemical properties. The plots show the
medians (symbol), quartiles (box), and ranges (whiskers). As in other organisms, all N-terminal targeting signals have a remarkably low content of
negatively charged residues. mTPs fromP. falciparumpossess the highest positive net charge, due to the highest content of positively charged residues.
In contrast to other organisms,P. falciparumgenerally uses lysine rather than arginine to achieve the positive charge, both overall and within its mTPs.

whereas fumarase class 1 was the only “false negative”. Of
the overpredicted sequences, both the M1 family aminopep-
tidase and the vacuolar proton-pumping pyrophosphatase-2
contain large basic N-terminal extensions compared to ho-
mologues and may be incorrectly annotated. Indeed the
annotating authors in both cases observed some intracellular
punctate immunolocalization for their respective proteins
[26,27], which with hindsight might indicate mitochondrial
localization. KAHRP is known to target to the plasma mem-
brane of the host red blood cell inside whichP. falciparum
lives, and contains an unusual internal signal peptide[28].
Our focus on the N-terminal part of the amino acid sequence
does not account for internal signal peptides, so sequences
like KAHRP will be classified incorrectly. The reason for
the misclassification of the one remaining false-positive and
the one false-negative sequence is unknown.

To reduce the number of false-positive results, the rela-
tive penalty for false positives to false negatives was set to
3, and the net was retrained in a 10-fold cross-validation
study, using again the network with 3 neurons in the hid-
den layer. A Matthews correlation coefficient of cc= 0.51
was obtained, with only one sequence being overpredicted
(vacuolar proton-pumping pyrophosphatase 2), while 26 se-
quences were underpredicted. To further improve prediction
results, in may be possible to incorporate additional infor-
mation, such as secondary structure elements[21,29]. The
role of amphiphilic�-helices in mTPs of other eukaryotes
is reasonably well understood[30,31], and it will be fas-
cinating to determine whether mTPs ofP. falciparumalso
exhibit �-helix characteristics.

3.5. Analysis of P. falciparum chromosome data

We used the network trained with all 175 sequences to
analyze the predicted protein-coding sequences from the
entireP. falciparumgenome. Of the 5334 annotated genes,
1177 genes encoding proteins with potential mitochon-
drial transit peptides (22%) were predicted. This number
seems high compared to other organisms.Saccharomyces
cerevisiaecontains about 6000 genes within its nuclear
genome [32], with about 500 containing mitochondrial
transit peptides (slightly above 8%). In the case ofAra-
bidopsis thaliana, automated tools predicted as few as 349
and as many as 2897 mitochondrially targeted genes from
a genome size of over 25,000 genes[33]. Therefore, the es-
timation given here should be regarded as an upper limit to
the number of nuclear-encoded mitochondrial proteins inP.
falciparum. Using the more stringent net with a high penalty
for false-positive sequences, 381 potential mitochondrial
precursor sequences were predicted, corresponding to 7.1%
of the P. falciparum genome. This is in a more realistic
range, compared to the numbers from other organisms. This
number of mTPs is considerably higher than the 246 (4.7%)
sequences predicted by TargetP and MitoProtII, as reported
in earlier work[1].

The mitochondrion ofP. falciparumis a little-studied or-
ganelle. Most researchers have focused on the role of theP.
falciparummitochondrion in electron transport and pyrimi-
dine biosynthesis[15,34–36]. The recent publication of the
P. falciparumgenome and the development ofPlasMit as
a tool for identifying mitochondrial proteins now provide
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us with the basis for future research into theP. falciparum
mitochondrion. For example, homology searching identified
numerous components of the citric acid cycle, which were
included in the positive data set. However, the enzymes cat-
alyzing some of the reactions in the cycle are not clear, e.g.
there are several candidates for the enzyme catalyzing the
dehydrogenation of malate to oxaloacetate. These include a
malate dehydrogenase and malate quinone oxidoreductase
[1]. PlasMit predicts malate dehydrogenase to be cytosolic
rather than mitochondrial, while malate quinone oxidore-
ductase is predicted to be mitochondrial with a high con-
fidence level, potentially complementing the loss of malate
dehydrogenase from the mitochondria.PlasMit also predicts
ferrochelatase, the ultimate enzyme in de novo haem biosyn-
thesis, to be mitochondrial. Thus, the first (aminolaevuli-
nate synthase, ALAs) and last enzymes of haem biosynthe-
sis are predicted to be mitochondrial, while it appears that
one or more of the remaining enzymes in the pathway may
be plastidic[37]. UsingPlasMit it will be possible to begin
assembling metabolic pathways that putatively occur in the
organelle.
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