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Abstract

The malaria causing protozoan Plasmodium falciparum contains a vestigal, non-photosynthetic plastid, the apicoplast. Numerous proteins

encoded by nuclear genes are targeted to the apicoplast courtesy of N-terminal extensions. With the impending sequence completion of an

entire genome of the malaria parasite, it is important to have software tools in place for prediction of subcellular locations for all proteins.

Apicoplast targeting signals are bipartite; containing a signal peptide and a transit peptide. Nuclear-encoded apicoplast protein precursors

were analyzed for characteristic features by statistical methods, principal component analysis, self-organizing maps, and supervised neural

networks. The transit peptide contains a net positive charge and is rich in asparagine, lysine, and isoleucine residues. A novel prediction

system (PATS, predict apicoplast-targeted sequences) was developed based on various sequence features, yielding a Matthews correlation

coefficient of 0.91 (97% correct predictions) in a 40-fold cross-validation study. This system predicted 22% apicoplast proteins of the 205

potential proteins on P. falciparum chromosome 2, and 21% of 243 chromosome 3 proteins. A combination of the PATS results with a signal

peptide prediction yields 15% potentially nuclear-encoded apicoplast proteins on chromosomes 2 and 3. The prediction tool will advance P.

falciparum genome analysis, and it might help to identify apicoplast proteins as drug targets for the development of novel anti-malaria

agents. q 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Malaria is a major world health problem. Approximately

500 million people are infected and 2–3 million of these die

annually (WHO, 1997). There is currently no effective

vaccine and the parasites are acquiring resistance to the

main drugs in use, so it is important that new drugs be devel-

oped. A promising new drug target emerged with the identi-

fication of a relict chloroplast (apicoplast) in Plasmodium

falciparum, the causative agent of cerebral malaria. Little

is known about the function of this organelle, which likely

arose through secondary endosymbiosis. Apicoplasts have

been shown to import nuclear-encoded proteins. To date

only a handful of such imported apicoplast proteins have

been identified, but it seems likely that the apicoplast imports

several hundred proteins (Waller et al., 2000). Identification

of these proteins would provide insight into apicoplast func-

tion and probably help identify new drug targets for the

development of novel anti-malaria agents. Plasmodium falci-

parum is the subject of a genome project that is nearing

completion. The genome comprises 14 chromosomes with

an estimated 18 Mb of DNA, which is thought to encode

about 9000 genes (Gardner, 1999). Clearly a proportion of

these genes will encode proteins destined for the apicoplast.

One approach to identifying targeted gene products is to

examine them for leader sequences required for targeting.

Targeting of the great majority of proteins into plastids is

dependent on N-terminal leader sequences. Within the apico-

plast, this leader is removed by a hitherto unknown plastid

peptidase (PP) activity (Waller et al., 2000).
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Targeting of nuclear-encoded apicoplast proteins appar-

ently commences via the secretory pathway into the endo-

plasmic reticulum (ER) – courtesy of a classic signal peptide.

Subsequent targeting across the inner pair of apicoplast

membranes involves a downstream transit peptide. Thus,

the N-terminal leader is bipartite, comprising a signal peptide

followed by a transit peptide (Fig. 1) (Waller et al., 2000).

Deletion experiments combining green fluorescent reporter

protein and parts of the leader in P. falciparum and the related

parasite Toxoplasma gondii showed that both components

are necessary for successful targeting. Lacking a signal

peptide, the proteins accumulated in the cytoplasm of P.

falciparum, apparently unable to enter the endomembrane

system. Lacking a transit peptide, the proteins did enter the

endomembrane systems, but failed to be diverted into the

apicoplast and were secreted (Waller et al., 2000).

The signal peptide components of the apicoplast-targeted

Plasmodium proteins resemble classic signal peptides,

containing a hydrophobic domain followed by a peptidase

cleavage site. These domains can usually be identified using

prediction tools such as SignalP or PSORT (Nakai and Kane-

hisa, 1992; Nielsen et al., 1997). Immediately downstream of

the predicted signal peptides, apicoplast-targeted proteins

exhibit the general features of chloroplast transit peptides,

having a net positive charge. However, unlike plant transit

peptides, which are enriched for the hydroxylated residues

serine and threonine (Cline and Henry, 1996), Plasmodium

transit peptides appear enriched in lysine and asparagine.

This difference in amino acid composition seems to prevent

the existing prediction systems trained to recognize plant

transit peptides from identifying Plasmodium transit

peptides on apicoplast-targeted proteins (Nakai and Kane-

hisa, 1992; Emanuelsson et al., 2000). We therefore decided

to develop a prediction model trained specifically for Plas-

modium transit peptides. Here we describe the development

of this system (PATS, predict apicoplast-targeted sequences)

and report on its predicting performance.

2. Methods

2.1. Sequence retrieval and data sets

Preliminary sequence data for P. falciparum were

obtained from the Institute for Genomic Research website

(http://www.tigr.org), the Sequencing Group at the Sanger

Centre website (www.sanger.ac.uk) and the Stanford DNA

Sequencing and Technology Center website (http://www-

sequence.stanford.edu/group/malaria), which are part of

the International Malaria Genome Sequencing Project

supported by awards from the National Institute of Allergy

and Infectious Diseases, National Institutes of Health, the

Burroughs Wellcome Fund and the US Department of

Defense. All data sets used in the present work can be

obtained via the GECCO!(tm) prediction server on the

www at the URL: http://www.modlab.de.

2.1.1. Positive examples

Location within the apicoplast has only been confirmed

experimentally for very few proteins (ACP, FabH and

DOXP reductase) (Gleeson, 2000; Waller et al., 2000).

Thirty-five likely nuclear-encoded P. falciparum apicoplast

protein precursors were inferred from similarity to known

plastid proteins by pair-wise sequence alignment using

TBLASTN 2.1.3 (BLOSUM62; gap existence cost 11; per

gap cost 1; Lambda ratio 0.85) (Altschul et al., 1997) against

the NCBI P. falciparum Blast Database (http://

www.ncbi.nlm.nih.gov/Malaria/blastindex.html). Proteins

were chosen that possessed N-terminal extensions contain-

ing a likely signal peptide followed by a peptide stretch

corresponding to a transit peptide. Potential PP cleavage

sites (C-terminus of the transit peptide) were deduced

from alignments of the mature part with proteins without

N-terminal extensions together with Western blot analysis

and molecular weight calculation for some of the proteins

(Waller et al., 2000). It must be stressed that the exact PP

processing sites are still uncertain. Applying the same tech-

nique as described above, an additional set of 49 sequences

with completely unknown PP cleavage sites – yet very

likely apicoplast location – was added to obtain a larger

collection of ‘positive examples’ for feature extraction.

The final set of positive examples contained 84 sequences.

2.1.2. Negative examples

Non-apicoplast sequences (‘negative examples’) were

collected from the SWISSPROT database (release of 20

June 2000) using the SRS software (Etzold et al., 1996)

(version 5.1.0) for retrieval of all annotated P. falciparum

sequences. This resulted in 147 entries. We expected that

the majority of these sequences were true negatives (non-

apicoplast proteins), because no database entries were

found containing the words ‘apicoplast’ or ‘plastid’. Two

of these sequences, CH60_PLAFG and YB20_PLAFA,

were excluded from the list of negative examples.

CH60_PLAFG, a chaperonine-60, is annotated as a potential

mitochondrial protein in SWISSPROT. Based on our analy-

sis this annotation seems to be incorrect. This assumption is

supported by prediction results obtained from the SignalP and

TargetP software tools (i.e. it contains a secretory signal;

Nielsen et al., 1997; Emanuelsson et al., 2000) and the Loca-

teProtein system (i.e. it is non-mitochondrial; Schneider,

J. Zuegge et al. / Gene 280 (2001) 19–2620

Fig. 1. Schematic of nuclear-encoded P. falciparum apicoplast protein

precursors containing a bipartite targeting signal. Arrowheads indicate

processing peptidase target sites. PP, plastid peptidase; SP, signal peptide;

SP I, signal peptidase I; TP, transit peptide.



1999). YB20_PLAFA from chromosome 2 belongs to an

uncharacterized protein family that spans over the Eubacteria

and Eukaryota (UPF0112 family; Gardner et al., 1998). In

more recent versions of the SWISSPROT database it is anno-

tated as ISPF_PLAFD, an enzyme containing a secretory

signal and being involved in the isoprenoid biosynthesis.

Based on this, its apicoplast location can be confirmed. Multi-

ple sequence alignments were produced for the remaining set

of 145 sequences using CLUSTAL-W with the BLOSOM62

matrix and standard gap penalties as in the original publica-

tion (Thompson et al., 1994). By visual inspection of the

alignments, we excluded 57 sequences to limit bias in the

sequence set. Fourteen known mitochondrial protein precur-

sors were added to facilitate the extraction of apicoplast-

specific targeting signal features. The final set of negative

examples (‘non-apicoplast’) contained 102 sequences.

2.1.3. Chromosome data

Two hundred and five sequences of chromosome 2 of P.

falciparum were retrieved from the Institute for Genomic

Research (TIGR) (Gardner et al., 1998), and 243 sequences

of chromosome 3 were retrieved from the Sanger Centre

(Bowman et al., 1999).

2.2. Sequence encoding

Each of the 84 likely apicoplast-targeted sequences was

dissected into three parts, the anticipated signal and transit

peptides, and the mature protein sequence. Subsequent

analysis was restricted to the signal and transit peptide

portion. The SignalP software (Nielsen et al., 1997) was

used to predict the length of the signal peptide in sequences

with an unknown signal peptide cleavage site. If SignalP did

not find a cleavage site, the first 23 N-terminal amino acids

were taken instead. This number of residues represents the

average length of a signal peptide, which was calculated on

the basis of Nielsen’s collection of eukaryotic signal

peptides (Nielsen et al., 1997). It is also mirrored in our

collection of positive examples containing putative clea-

vage sites (Fig. 2). The length of transit peptide of the 54

sequences with an unknown PP cleavage site was defined to

be 78 residues, because this is the median of the length

distribution of the 35 transit peptides with a known PP clea-

vage site (Fig. 2). The 102 non-apicoplast sequences from

the SWISSPROT database were similarly split into two

targeting sequence parts, comprising residue positions 1–

23 and 24–101, respectively.

In this work we use the terms ‘signal peptide part’ or ‘S-

part’, and ‘transit peptide part’ or ‘T-part’ for the two

sequence portions of positive and negative sequences.

This was done even though the 102 sequences from the

SWISSPROT database most likely will not contain a real

signal or transit peptide.

Two different numerical encoding schemes were applied:

the amino acid composition and physico-chemical amino

acid properties.

2.2.1. Amino acid composition

For each sequence, two 20-dimensional composition

vectors were computed containing the relative residue

frequencies of the S- and T-parts. This sequence descriptor

was 20 1 20 ¼ 40-dimensional.

2.2.2. Physico-chemical properties

A set of 19 physico-chemical properties was used to

encode the S-part and the T-part, resulting in a 38-dimen-

sional descriptor providing the input for principal compo-

nent analysis (PCA). The scales were derived from PCA

(Jackson, 1991) of 434 amino acid properties (Tomii and

Kanehisa, 1996). Analysis of the PCA loadings matrix indi-

cates a correlation of PC1 with hydrophobicity scales, PC2

with secondary structure propensities, and PC3 with the

genetic code and residue abundance. The additional princi-

pal components did not clearly correlate with single amino

acid properties. This result substantiates earlier findings

(Schneider and Wrede, 1998). The resulting 38 variables

describing a sequence were ranked according to the partial

least square (PLS) variable influence on projection (VIP)

score (Wold, 1994) as computed by the SIMCA-P 8.0 soft-

ware package (Umetrics AB, Umeå, Sweden).

2.3. PCA

PCA was used to calculate orthogonal variables from raw

data matrices. Our own C-code was written implementing

the NIPALS (nonlinear iterative PLS) algorithm for latent

variable extraction.

2.4. Projection to latent structures using PLS analysis

PLS analysis was performed in order to rank the amino

acid properties according to their ability to discriminate

between apicoplast-targeted and non-apicoplast protein
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Fig. 2. Lengths of the signal (SP) and transit (TP) peptides of the 35 likely

apicoplast-targeted proteins with known PP cleavage site. The box-whisker

plots show the median, the 25 and 75% quartiles, the standard deviation and

the six most extreme values.



sequences. The ranking was performed utilizing the VIP

score provided by the SIMCA-P 8.0 software package

(Wold, 1994).

2.5. Self-organizing map (SOM)

Kohonen’s SOM algorithm (Kohonen, 1982) was

employed to generate two-dimensional projections of the

sequence distributions in the spaces spanned by the 40-

dimensional composition descriptor and the 38-dimensional

property descriptor. We used the NEUROMAP software

toolbox (Roche intranet application; Schneider and

Wrede, 1998; Schneider, 1999). Toroidal maps containing

64 neurons arranged in a 8 £ 8 rectangular grid were gener-

ated for both amino acid composition data and physico-

chemical property data. Training was aborted after 105 opti-

mization cycles (forced stop). The initial learning rate was

set to t ¼ 1, and the initial neighborhood-update radius was

r ¼ 4. As a distance measure the Manhattan (city block)

metric was chosen. For details on the training method, see

elsewhere (Schneider and Wrede, 1998).

2.6. Artificial neural network (ANN)

Fully-connected, three-layered, feed-forward networks

were used for feature extraction by supervised learning (for

details about neural networks see, for example, Hertz et al.,

1991). Such systems can be used as nonlinear classifiers.

Sigmoidal activation was employed for hidden layer neurons

and the single output neuron. Target values were set to one

for the 84 nuclear-encoded apicoplast precursors and zero for

the 102 other sequences, i.e. the neural network output varied

between zero and one, where a value close to one indicates

potential apicoplast precursors. All networks were trained

using a (1, l ) evolution strategy, as implemented in the

PROFI software (Schneider and Wrede, 1998; Schneider,

1999). The number of offspring per generation was

l ¼ 500. Training was stopped after 100 generations.

Forty-fold cross-validation was performed with random

8 1 2 splits of training and test sequences, i.e. 20% cancella-

tion data. Classification and reclassification accuracy was

measured by the mean-square-error (mse) and the correlation

coefficient according to Matthews (1975).

For the amino acid composition approach, the input layer

contained 40 fan-out neurons. Twenty input units received

the amino acid composition vector derived from the S-parts,

and 20 input units were fed with the amino acid composition

vector calculated from the T-parts. Several ANNs with

varying numbers of hidden neurons were trained to system-

atically find the preferred network architecture.

The ANNs that were trained with the property data

contained 1–38 fan-out neurons in the input layer, and two

to five neurons in the hidden layer. The number of input

neurons was systematically increased from 1 to 38 to inves-

tigate the influence of the variables on the prediction accu-

racy.

2.7. Accessibility of the PATS prediction system

The PATS system is based on a 3-4-1 ANN. The www

interface accepts FastA sequence format and is accessible

through the GECCO!(tm) prediction server on the www at

URL: http://www.modlab.de. For further details about the

prediction software, see this URL.

3. Results and discussion

A set of 84 apicoplast targeting sequences was compiled

and compared to N-terminal parts of 102 non-apicoplast

(cytoplasmic, secretory, mitochondrial) sequences. The

aim was to extract characteristic targeting signal features

and to build a predictive model for P. falciparum genome

analysis. First, we performed feature extraction by PCA to

get an idea of dominant features. PCA and SOM projections

were then used to visualize the distribution of apicoplast and

non-apicoplast sequences in descriptor space. The identical

sets of sequences were used in all experiments to obtain

comparable results. Finally, two types of neural networks

were trained based either on the amino acid composition or

a ranked list of properties providing the input.

3.1. Feature extraction by PCA

The PCA based on amino acid frequencies revealed the

following features. After varimax rotation, the first princi-

pal component (PC1, eigenvalue ¼ 3:1, 7.7% explained

variance) correlates with a high asparagine content in the

T-part (loading ¼ 0:7) and a low content of aspartic acid in

the S-part (loading ¼ 20:66). The second principal

component (PC2, eigenvalue ¼ 2:7, 6.7% explained

variance) correlates with a low histidine content in the S-

part (loading ¼ 20:73). These findings are in perfect

agreement with the observed prevalence of amino acids

in apicoplast targeting peptides (Fig. 3), and the amino

acid composition observed in secretory signal peptides

(von Heijne, 1985).

The second PCA was based on the property descriptor.

After varimax rotation, the first principal component (PC1,

eigenvalue ¼ 5:4, 14.2% explained variance) correlates

with amino acid property component 3 (loading ¼ 0:77)

of the transit peptide part, which correlates with general

genetic code and residue abundance. The second principal

component (PC2, eigenvalue ¼ 4:1, 10.9% explained

variance) correlates with amino acid property component

6 (loading ¼ 20:73) of the signal peptide part, which corre-

lates with amino acid frequencies within known secondary

structure motifs.

Although this analysis offers some hints as to what the

important features of the apicoplast targeting signal might

be, one must be careful with the interpretation of loadings

here, since the fraction of variance explained by the indivi-

dual principal components is low.

J. Zuegge et al. / Gene 280 (2001) 19–2622



3.2. Mapping of sequences by PCA and SOM and

identification of outliers

PCA leads to a linear projection of a high-dimensional

space, whereas the SOM projections are inherently

nonlinear. The scatter plots resulting from the two first prin-

cipal components (PC1, PC2) clearly show a separation of

apicoplast and non-apicoplast data for both encoding

schemes (Fig. 4a,b). This observation is substantiated by

the SOM projections, where the apicoplast and non-apico-

plast data occupy separated areas (Fig. 4c,d).

Both mappings led to the identification of three potential

non-apicoplast proteins, which fall in the ‘apicoplast area’

of all calculated maps: ASP_PLAFS, EBA1_PLAFC and

S230_PLAFO. ASP_PLAFS is annotated as hypothetical

aspartic acid-rich protein precursor and is coded on the

reverse strand of a histidine-rich protein. A BLAST2 search

in the SWISSPROT database with this query did not result

in any other significant hits, thereby favoring its hypotheti-

cal nature. It remains unclear if this hypothetical protein

would actually be targeted to the apicoplast. Both

EBA1_PLAFC and S230_PLAFO are known to be non-

apicoplast-targeted. EBA1_PLAFC is the gene for erythro-
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Fig. 3. Average amino acid composition of P. falciparum transit peptides

(N ¼ 35). This box-whisker plot represents the median, 25 and 75% quar-

tiles, and extreme values.

Fig. 4. Distributions of nuclear-encoded apicoplast-targeted and putative non-apicoplast sequences. Sequences were described by amino acid composition (a,c)

and physico-chemical properties (b,d). PCA projections are shown in (a,b) (white, apicoplast; black, non-apicoplast). SOM projections are shown in (c,d),

where gray shading indicates the location of apicoplast proteins (dark, many; white, none). Note that the SOMs form a torus.



cyte binding antigen EBA-175, which is located in the

microneme organelle. The existence of a secretion signal

in the two precursors is evident, and there is experimental

proof of the cell surface location of S230_PLAFO.

Several additional sequences cluster together with the

known apicoplast proteins in some of the maps: ABRA_-

PLAFC, GARP_PLAFF, ARP2_PLAFA, PF2L_PLAFP,

PF12_PLAFA, RPOB_PLAFA and ERD2_PLAFA. All but

RPOB_PLAFA and ERD2_PLAFA have SWISSPROT

annotations related to ‘antigen’ or ‘surface protein’, or are

involved in cell–cell recognition. ABRA_PLAFC has also

been found on the surface of the parasitophorous vacuole.

GARP_PLAFF, a glutamic acid-rich sequence, might also be

an apicoplast-targeted protein. It contains a signal peptide,

and the amino acid composition of the putative transit peptide

part classifies it as apicoplast-targeted. Both ARP2_PLAFA

and PF2L_PLAFP are incomplete sequences annotated as a

‘malaria antigen’. PF12_PLAFA is annotated as a

‘membrane antigen’. RPOB_PLAFA is annotated as ‘DNA

directed RNA polymerase’. ERD2_PLAFA is a receptor

required for protein retention in the ER, and immunolocali-

zation studies indicated that this protein is concentrated in the

cis Golgi. RPOB_PLAFA and ERD2_PLAFA were the only

obviously false-predicted proteins that fell in the ‘apicoplast

area’ in some of the maps. Both sequences are considered to

lack a signal peptide according to the SignalP software. We

observed that the SOM clustering results slightly depend on

the training conditions chosen, e.g. the learning update radius

or the total number of update cycles. Thus, one might also

attribute the mis-classification of RPOB_PLAFA, for exam-

ple, as an artifact resulting from SOM training errors. Such

problems are known for conventional Kohonen-type SOM

(Kohonen, 1982).

Three of our presumably positive examples, DNAJ

(EMBL ID: AB016024), ‘50s rpl7/12’ (PlasmoDB entry

no. 89141541), and ‘Leucine aminopeptidase’ (PlasmoDB

entry no. 89143622) (The Plasmodium Genome Consor-

tium, 2001), do not cluster together with the other apico-

plast-targeted sequences. DNAJ is a heat shock protein

(Watanabe, 1997). The ‘50s rpl7/12’ (neuron 8/6 in Fig.

4c) and ‘Leucine aminopeptidase’ were expected to be

apicoplast-targeted, because of their predicted signal

peptides, their N-terminal extensions and their homology

to known plastid proteins. However, mitochondrially

targeted copies of these proteins may also exist. Therefore,

it might be possible that these two proteins are indeed non-

apicoplast-targeted.

In summary, the two-dimensional projections of high-

dimensional descriptor space showed that our choice of

descriptors provides a useful starting point for subsequent

neural network training. Both encoding schemes seem to be

equally suited. Furthermore, we were able to identify some

examples of proteins, which were probably mis-classified in

our data sets. We did not remove them from our database,

because these singletons could also be attributed to mapping

errors.

3.3. Neural network training

An ANN-based prediction system was developed to clas-

sify unknown protein sequences from P. falciparum. First, a

system was developed using the amino acid composition

patterns. A three-layered ANN containing two hidden

units (40-2-1 architecture) was trained with the complete

P. falciparum data set (84 positive, 102 negative examples;

40-dimensional input vector). The Matthews correlation

coefficient on the training data was cctrain ¼ 0:98, with

one false-positive (ASP_PLAFS) and one false-negative

prediction (DNAJ). The test data prediction yielded

cctest ¼ 0:75. A system with three hidden neurons yielded

cctrain ¼ 0:99 and cctest ¼ 0:76. ANNs with additional

hidden neurons showed no mis-predictions of the training

patterns (cctrain ¼ 1:0), and reach test data accuracy of

cctest ¼ 0:77. From the cross-validation study results we

assume that this behavior is due to over-fitting (Table 1).

A common way to minimize the effect of over-fitting is to

diminish the dimensionality of the ANN input vector. We

achieved this by changing the encoding scheme of the S-

and T-parts from amino acid abundance to 19 physico-

chemical descriptors. The resulting 38 input dimensions of

each sequence were sorted by their VIP score in a PLS

model. ANNs with the full set of descriptors showed very

similar behavior to the ANNs that were trained with the

amino acid composition vectors (Table 1). Systematically

changing the dimension of the input vectors and hidden

neurons resulted in a 3-4-1 net topology yielding cctrain ¼

0:91 (97% correct prediction) and cctest ¼ 0:87 (93% correct

prediction) (Fig. 5). The three input dimensions corre-

sponded to the first amino acid property of the S-part

(hydrophobicity), and the third and fifth properties of the

T-part. The ANN showed the highest Matthews correlation

coefficient and the lowest mse for cross-validation test data

of all tested networks (Table 1).
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Table 1

Neural network prediction (average values obtained from 40-times cross-

validation)

Network architecture Training data Test data

mse £ 1023 cc mse £ 1023 cc

Networks based on the amino acid composition

40-2-1 8.4 0.98 112.5 0.75

40-3-1 6.9 0.99 107.3 0.76

40-4-1 5.2 0.99 102.5 0.77

40-5-1 5.5 0.99 102.0 0.76

Networks based on physico-chemical properties

38-2-1 4.2 0.99 113.2 0.76

38-3-1 4.7 0.99 101.4 0.77

38-4-1 1.8 1.00 103.2 0.76

38-5-1 2.4 1.00 98.7 0.77

3-2-1 45.2 0.90 54.4 0.86

3-3-1 42.1 0.91 55.7 0.87

3-4-1 41.0 0.91 54.7 0.87

4-5-1 39.4 0.91 59.2 0.86



A network with this 3-4-1 topology was trained with

a complete P. falciparum data set to form the PATS pre-

diction system. For reclassification of the training data

this ANN reached a correlation coefficient of cc ¼ 0:91.

Three false-negatives (Leucine aminopeptidase, ‘50s rpl7/

12’ and DNAJ) and five false-positives (EBA1_PLAFC,

ERD2_PLAFA, PF12_PLAFA, RPOB_PLAFA and

S230_PLAFO) were observed. These proteins were already

identified as outliers in one or more SOM or PCA projec-

tions. Using the SignalP software to reduce the number of

false-positives, the reclassification power of the whole

prediction system increases to cc ¼ 0:94, because

ERD2_PLAFA and RPOB_PLAFA do not contain a clear

signal peptide.

3.4. Analysis of P. falciparum chromosome data

How many apicoplast-targeted proteins are to be

expected on the P. falciparum genome? It was initially esti-

mated that plant chloroplasts contain between 1000 and

5000 proteins, the vast majority of which are nuclear-

encoded (Martin and Herrmann, 1998). Analysis of the

finished Arabidopsis genome predicts 3574 plastid-targeted

proteins (The Arabidopsis Genome Initiative, 2000). In

Plasmodium the apicoplast will lack the photosynthetic

enzymes (Wilson et al., 1996) and the enzymes of the shiki-

mate pathway for aromatic amino acids (Keeling et al.,

1999), but may have some others that chloroplasts lack.

At a very rough guess, we expect that the nuclear genome

will encode for between 500 and 1500 apicoplast proteins

(Waller et al., 2000). The entire Plasmodium genome

contains an estimated 9000 proteins, so between 6 and

17% of all proteins could be apicoplast-targeted. The P.

falciparum project is ongoing and the complete genome

sequence will be available in the near future. So far, only

the data for chromosomes 2 and 3 are available for sequence

analysis (Gardner et al., 1998; Bowman et al., 1999). Chro-

mosome 2 encodes 205 recognized proteins. Our PATS

system recognized 45 (22%) of these sequences as poten-

tially apicoplast-targeted. On chromosome 3 there are 243

proteins encoded, of which 51 (21%) were classified as

potentially apicoplast-targeted by PATS. Subsequent analy-

sis with the SignalP software excluded 11 proteins from

chromosome 2 and 16 proteins from chromosome 3,

because of the lack of a signal peptide. Manual inspection

of the resulting 69 (15%) protein sequences from both chro-

mosomes led to the assumption that 38 of these are indeed

very likely to be apicoplast-targeted. This means that at least

8.5% of the proteins encoded on chromosome 2 and 3 likely

are apicoplast-targeted. This number is well within the

rough estimate discussed above.

In addition to those proteins targeted to the apicoplast via

the canonical bipartite presequence, another population of

apicoplast-targeted proteins may exist, employing hitherto

unrecognized targeting motifs. As is the case for plant chlor-

oplasts, this may apply particularly to membrane proteins

(Schleiff and Soll, 2000). It has been estimated that as many

as several hundred proteins are targeted to the Arabidopsis

chloroplast in processes independent of transit peptides

(Abdallah et al., 2000). The detection of such proteins in

Plasmodium awaits a proteomic analysis of isolated apico-

plasts or a systematic tagging of predicted proteins from the

genome project.

The PATS prediction system complements existing

prediction tools available for plant chloroplast transit

peptides, which can be predicted at a reasonable level of

accuracy, e.g. by neural network models like ChloroP

(Emanuelsson et al., 2000) or knowledge-based systems

like PSORT (Nakai and Kanehisa, 1992). Nevertheless,

there is room for further improvement. In the current version

of the software, no attempts are made to predict the actual

lengths of the S- and T-parts, although the software can

handle differing lengths for each predicted sequence.

While highly sophisticated systems for the recognition of

signal peptides and their cleavage sites are available (Nakai

and Kanehisa, 1992; Nielsen et al., 1997), no such system is

available for the cleavage site of transit peptides. Such a

system could employ hidden Markov models, which were

shown to be particularly suited for this kind of problem

(Hughey and Krogh, 1996). Another approach could make

use of the Shannon information content of apicoplast-

targeted sequences, either encoded through amino acid

abundance or physico-chemical properties (Zuegge et al.,

2001). Unfortunately, all of these methods require a

substantial number of known examples and there is

currently little information on apicoplast leader cleavage

sites. We are confident that the current version of the

PATS software will help to identify new unknown apico-

plast-targeted sequences, and thereby enable the develop-

ment of improved transit peptide prediction systems.
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Fig. 5. Mean values and standard deviations of the Matthews correlation

coefficient (cc) for ANNs with different input vector dimensions. The prop-

erty values providing the network input were sorted by VIP rank. Dark

circles show values for the training data, while white circles indicate values

from the cross-correlation testing data.
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